Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(8): 1588-1596.e6, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36924767

RESUMO

Plant receptor kinases are key transducers of extracellular stimuli, such as the presence of beneficial or pathogenic microbes or secreted signaling molecules. Receptor kinases are regulated by numerous post-translational modifications.1,2,3 Here, using the immune receptor kinases FLS24 and EFR,5 we show that S-acylation at a cysteine conserved in all plant receptor kinases is crucial for function. S-acylation involves the addition of long-chain fatty acids to cysteine residues within proteins, altering their biochemical properties and behavior within the membrane environment.6 We observe S-acylation of FLS2 at C-terminal kinase domain cysteine residues within minutes following the perception of its ligand, flg22, in a BAK1 co-receptor and PUB12/13 ubiquitin ligase-dependent manner. We demonstrate that S-acylation is essential for FLS2-mediated immune signaling and resistance to bacterial infection. Similarly, mutating the corresponding conserved cysteine residue in EFR suppressed elf18-triggered signaling. Analysis of unstimulated and activated FLS2-containing complexes using microscopy, detergents, and native membrane DIBMA nanodiscs indicates that S-acylation stabilizes, and promotes retention of, activated receptor kinase complexes at the plasma membrane to increase signaling efficiency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ligantes , Cisteína/metabolismo , Plantas/metabolismo , Membrana Celular/metabolismo , Acilação , Imunidade Vegetal
2.
Plant Physiol ; 177(2): 522-531, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29686160

RESUMO

Receptor-like kinases (RLKs) are the largest family of proteins in plants and are responsible for perceiving the vast majority of extracellular stimuli. Thus, RLKs function in diverse processes, including sensing pathogen attacks, regulating symbiotic interactions, transducing hormone and peptide signals, and monitoring cell wall status. However, despite their fundamental role in plant biology, very few antibodies are available against RLKs, which necessitates the use of epitope tags and fluorescent protein fusions in biochemical analyses such as immunoblot analysis and intracellular visualization. Epitope tags are widely used and are typically assumed to be benign, with no influence on protein function. FLAGELLIN SENSITIVE2 (FLS2) is the receptor for bacterial flagellin and often is used as a model for RLK function. Previous work implies that carboxyl-terminal epitope fusions to FLS2 maintain protein function. Here, a detailed complementation analysis of Arabidopsis (Arabidopsis thaliana) fls2 mutant plants expressing various FLS2 C-terminal epitope fusions revealed highly variable and unpredictable FLS2-mediated signaling outputs. In addition, only one out of four FLS2 epitope fusions maintained the ability to inhibit plant growth in response to flg22 treatment comparable to that in the wild type or control untagged transgenic lines. These results raise concerns over the widespread use of RLK epitope tag fusions for functional studies. Many of the subtleties of FLS2 function, and by extension those of other RLKs, may have been overlooked or inappropriately interpreted through the use of RLK epitope tag fusions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Epitopos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Epitopos/genética , Teste de Complementação Genética , Sistema de Sinalização das MAP Quinases , Mutação , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...